Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 8: 840, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824610

RESUMO

During the course of Chagas disease, infectious forms of Trypanosoma cruzi are occasionally liberated from parasitized heart cells. Studies performed with tissue culture trypomastigotes (TCTs, Dm28c strain) demonstrated that these parasites evoke neutrophil/CXCR2-dependent microvascular leakage by activating innate sentinel cells via toll-like receptor 2 (TLR2). Upon plasma extravasation, proteolytically derived kinins and C5a stimulate immunoprotective Th1 responses via cross-talk between bradykinin B2 receptors (B2Rs) and C5aR. Awareness that TCTs invade cardiovascular cells in vitro via interdependent activation of B2R and endothelin receptors [endothelin A receptor (ETAR)/endothelin B receptor (ETBR)] led us to hypothesize that T. cruzi might reciprocally benefit from the formation of infection-associated edema via activation of kallikrein-kinin system (KKS). Using intravital microscopy, here we first examined the functional interplay between mast cells (MCs) and the KKS by topically exposing the hamster cheek pouch (HCP) tissues to dextran sulfate (DXS), a potent "contact" activator of the KKS. Surprisingly, although DXS was inert for at least 30 min, a subtle MC-driven leakage resulted in factor XII (FXII)-dependent activation of the KKS, which then amplified inflammation via generation of bradykinin (BK). Guided by this mechanistic insight, we next exposed TCTs to "leaky" HCP-forged by low dose histamine application-and found that the proinflammatory phenotype of TCTs was boosted by BK generated via the MC/KKS pathway. Measurements of footpad edema in MC-deficient mice linked TCT-evoked inflammation to MC degranulation (upstream) and FXII-mediated generation of BK (downstream). We then inoculated TCTs intracardiacally in mice and found a striking decrease of parasite DNA (quantitative polymerase chain reaction; 3 d.p.i.) in the heart of MC-deficient mutant mice. Moreover, the intracardiac parasite load was significantly reduced in WT mice pretreated with (i) cromoglycate (MC stabilizer) (ii) infestin-4, a specific inhibitor of FXIIa (iii) HOE-140 (specific antagonist of B2R), and (iv) bosentan, a non-selective antagonist of ETAR/ETBR. Notably, histopathology of heart tissues from mice pretreated with these G protein-coupled receptors blockers revealed that myocarditis and heart fibrosis (30 d.p.i.) was markedly and redundantly attenuated. Collectively, our study suggests that inflammatory edema propagated via activation of the MC/KKS pathway fuels intracardiac parasitism by generating infection-stimulatory peptides (BK and endothelins) in the edematous heart tissues.

2.
J Leukoc Biol ; 85(6): 1005-14, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19293401

RESUMO

Previous analysis of the endogenous innate signals that steer T cell-dependent immunity in mice acutely infected by the protozoan Trypanosoma cruzi revealed that bradykinin (BK) or lysyl-BK, i.e., the short-lived peptides excised from plasma-borne kininogens through the activity of cruzipain, induces dendritic cell maturation via BK B(2) receptors (B(2)R). Here, we used the s.c. model of T. cruzi infection to study the functional interplay of TLR2, CXCR2, and B(2)R in edema development. Using intravital microscopy, we found that repertaxin (CXCR2 antagonist) blocked tissue-culture trypomastigotes (TCT)-induced plasma leakage and leukocyte accumulation in the hamster cheek pouch topically exposed to TCT. Furthermore, we found that TCT-evoked paw edema in BALB/c mice was blocked by repertaxin or HOE-140 (B(2)R antagonist), suggesting that CXCR2 propels the extravascular activation of the kinin/B(2)R pathway. We then asked if TLR2-mediated sensing of TCT by innate sentinel cells could induce secretion of CXC chemokines, which would then evoke neutrophil-dependent plasma leakage via the CXCR2/B(2)R pathway. Consistent with this notion, in vitro studies revealed that TCT induce robust secretion of CXC chemokines by resident macrophages in a TLR2-dependent manner. In contrast, TLR2(+/+) macrophages stimulated with insect-derived metacyclic trypomastigotes or epimastigotes, which lack the developmentally regulated TLR2 agonist displayed by TCT, failed to secrete keratinocyte-derived chemokine/MIP-2. Collectively, these results suggest that secretion of CXC chemokines by innate sentinel cells links TLR2-dependent recognition of TCT to the kinin system, a proteolytic web that potently amplifies vascular inflammation and innate immunity through the extravascular release of BK.


Assuntos
Quimiocinas CXC/metabolismo , Cininas/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Processamento de Proteína Pós-Traducional , Receptor 2 Toll-Like/imunologia , Trypanosoma cruzi/fisiologia , Animais , Cricetinae , Edema/complicações , Edema/imunologia , Edema/parasitologia , Genótipo , Inflamação/complicações , Inflamação/imunologia , Inflamação/parasitologia , Estágios do Ciclo de Vida , Macrófagos/parasitologia , Camundongos , Modelos Imunológicos , Especificidade de Órgãos , Parasitos/crescimento & desenvolvimento , Fenótipo , Receptor B2 da Bradicinina/metabolismo , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...